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Expert in External Controls
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The key secondary endpoint is overall survival (OS). The analysis population for OS will be augmented by�patients from an external control arm so that approximately half of the patients in the resulting control�group are comprised of patients from the external control.



Emerging RWD Biosphere





• Methodology Idea of multi-source adaptive design

• Flexible borrowing methods with MEMs

• Context for application (Protocol Violations; Hist Trial Data; RWD; digitized 
data)

Outline
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WHO CAN BE AVERAGED?
PRECISION MEDICINE FROM THE PERSPECTIVE OF DATA = ASCERTAINING  

STATISTICAL EXCHANGEABILITY
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MULTI-SOURCE EXCHANGEABILITY MODELS (MEMS)

• Asymmetric settings (primary & supple cohorts); Kaizer et al. 2017, 
Biostatistics

• Symmetric settings (all cohorts primary) and sequential design; Hobbs 
and Landin 2018, Stat in Med

• Adaptive Platform Design; Kaizer et al. 2018, Biometrics
• Frequentist Trial Operating Characteristics; Kaizer et al. 2019, JCO 

Precision Oncology
• Open-source statistical software with the Basket package; Kane et al. 

2020, The R Journal
• Multiple Indication Design Criteria; Kaizer et al. 2021, SMMR
• False Discovery Control; Zabor et al. 2022, Clinical Trials
• Sequential Master protocol; Kaizer et al. 2022, PLOS One

Bayesian models that allow for multiple "sources" of exchangeability

https://doi.org/10.1093/biostatistics/kxx031
https://doi.org/10.1002/sim.7893
https://doi.org/10.1111/biom.12841
https://ascopubs.org/doi/full/10.1200/PO.19.00194
https://arxiv.org/abs/1908.00618
https://arxiv.org/abs/2007.03792
https://journals.sagepub.com/doi/abs/10.1177/17407745211073624
https://doi.org/10.1371/journal.pone.0272367
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Real-world data reports?



RWD and Regulators
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The standard for drug approval remains the same

• The basis for approval remains the same (Section 314.50, CFR)
• “substantial evidence that the drugs will have the effect”
• “adequate and well-controlled clinical investigations” 

• Regulatory agencies exercise great flexibility to address practical and unmet 
medical needs, e.g. considering

• rarity of the disease
• lack of a suitable control

• Issues confronting the use of RWD: Data quality, Bias/Confouding, 
Heterogeneity



Challenges with EMR data for Precision Oncology

Data Reliability/Quality
a) Is the EMR data reliable within academic medical centers,  what about community?
b) To what extent are basic clinical prognostic attributes captured (T-stage, N-stage, histology, line of 

therapy, time since last platinum-based chemotherapy)

Patient Identification
a) FDA approved targeted agents: EGFR, ALK, ROS1, BRAF, MET, RET, KRAS G12C, and a tumor agnostic 

designation for NTRK
b) wide variation between clinical settings in rates & type of testing
c) 59% of academic practices using multigene panels, while only 28% of community practices
d) complete recommendation guided testing was only 18% in 2018

Endpoints
a) Tumor response?
b) Real-world counterparts for OS, PFS, TTP
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Friends of Cancer Research. Trends in the molecular diagnosis of lung cancer: results from and online market research survey. https://www.focr.org/sites/default/ files/pdf/FINAL%202017%20Friends%20NSCLC%20White% 20Paper.pdf. Accessed October 19, 2020.
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Real-World Endpoint Recommendations
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Leveraging digitized historical trial data









OS for 2nd line chemotherapy (Docetaxel, Paclitaxel & Vinflunine)

ORR for 2nd line chemotherapy 
(Docetaxel, Paclitaxel & Vinflunine)
• Historical control data: ranges from 7% to 

19%

• Phase III study has ORR 13.4% in ITT 
population

• Overall estimate of ORR is 11.5% using 
random effect model

• The ORR in IC2/3 subpopulation in Phase 
III study was 21.6%



OS for 2nd line chemotherapy (Docetaxel, Paclitaxel & Vinflunine)
• (a) Historical control data (chemotherapy)
• (b) Overall distribution compared with Phase III control 



OS for 2nd line chemotherapy (Docetaxel, Paclitaxel & Vinflunine)





Simulated Success Probability with Current Design



Simulated Success Probability as a function of PD-L1



Using historical data to train mediation 
models 



Mediation Models for Drug Development 

Treatment
and

Indication 

Response

(surrogate)

Survival

(endpoint)

• Characterize the local 
mechanism of drug 

• Partially observed at the time 
of an investment decision for 
novel drug

• Intervention and target 
population

• Controlled by investigators 
and design

• Downstream clinical efficacy 

• Basis for regulatory approval

• Unknown from early phase 
inquiry

Mediator



Mediation Models underly Drug Development

Response

(surrogate)

Survival

(endpoint)

Direct Effect

Indirect Effect

Varies by Clinical 
Indication and line of 

therapy

Response Rate

Treatment
and

Indication 

Mediator



Conventional Go / No-Go Decision-making 

Response

(surrogate)

Survival

(endpoint)

Response Rate

Treatment
and

Indication 

Mediator



Mediation Model

Response

(surrogate)

Survival

(endpoint)

Direct Effect

- Most uncertain component
- Large values more unlikely
- Cautious projections assume 

limited direct effect for first line 
patients

Indirect Effect

- Adopt the indirect effect   
observed for Control

- Assume that patients with PD, 
SD, PR, CR have common 
trends for endpoint

Response Rate
- Estimate from early phase

- Eval enrolled patients 
(favorable enrollment?)

- Accommodate Regression 
to the mean

Treatment
and

Indication 



Mediation Modeling for Trial Simulation

 Inputs Existing Databases
• Future control arm
• Patient-level data 
• Historical trial reports

 Captures the relationships among
• Tumor response (surrogate)
• Phase III Endpoint (OS or PFS)
• Patient enrollment

 Outputs the Probability of Success 
(statistically significant p-value at 
the trials completion) for a 
given design



Discussion
• RWD has been socialized throughout biomedical research

• considerable investment has occurred in the last 5 years

• numerous applications for EMR data, but its role in precision oncology remains ill-
defined

• sources vary greatly in the reliability and usefulness to registration trials

EMR data 
• offers 3 endpoints for oncology: rwOS, rwTTNT, rwTTD
• incomplete w/ unknown reliability across academic & community clinics

Historical Trial data 
• concrete criteria for patient eligibility 
• reliable outcome ascertainment for registration trial analysis
• but likely lacks specificity to novel biomarker profiles

Presenter Notes
Presentation Notes





Discussion

Digitizing Trial Results
• concrete criteria for patient eligibility 
• reliable outcome ascertainment for registration trial analysis
• may lack specificity to novel biomarker profiles
• outcome distributions available for all studied arms
• use to set statistical assumption required for design
• set targets for ORR and Duration of Response based on historical successes

• Signal for understanding Go/No-Go or Stop decisions exists from the relationships 
between ORR, duration of response, predicted survival benefit
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